由于印染废水中含有大量有机物,这些有机物质会通过膜表面吸附、膜孔内吸附等使膜孔堵塞,当浓差极化严重时,有机物质就会析出附着在膜表面,形成凝胶层。膜孔堵塞及凝胶层的产生会导致膜污染的形成,从而使膜通量急剧下降。下降后的膜通量以J表示,J0为膜初始通量,J/J0随时间变化的关系如图3所示。
由图3可知,4种膜通量在某一运行周期的初始阶段急剧下降,后来逐渐趋于平缓,这主要是由于在压力作用下,浓差极化在初始时刻即形成,废水渗透压增加导致膜两侧净推动力减小;而在后期运行中,通量仍有所下降,这主要是由于浓差极化的存在使凝胶层逐渐形成,且不断被压实所致,另外,膜孔堵塞也是后期膜通量下降的重要原因。
图4为NF-1#膜和BW30膜表面的电镜图。
由图4可知,有机物析出所形成的凝胶层已覆盖了膜面,成为膜通量下降的主要原因。由于反渗透过程操作压力为2.8 MPa,大于纳滤过程操作压力(1.4 MPa),并且反渗透膜较纳滤膜更致密,因而反渗透膜对有机物以及盐类小分子物质的去除效果更明显,同时也使得反渗透过程的浓差极化更严重,凝胶层在高压下变得更加致密,极大地增加了凝胶层阻力。
从图3还可看出,无论反渗透还是纳滤,结构更致密的膜通量下降的程度较结构疏松的膜要小得多,说明小分子量物质对膜孔的堵塞可能是造成膜污染的一个重要因素。如6 h后,具有较大膜孔径的NF-1#膜通量为初始通量的0.45,比反渗透膜的通量下降幅度还大,而相对致密的NF-2#膜通量稳定性则要好得多。对两种反渗透膜来说,其结果比较也是一样,即BW30比CPA2膜通量稳定。
2.3膜对COD和盐的去除效果
纳滤和反渗透膜产水的COD和电导率,以及膜对COD和盐的去除率如图5、图6所示,膜对离子的截留率见图7所示。