纺机网技术中心

 您所在的位置:  纺机网 >  技术中心 >  环保 >

复级裂解处理曝气反应的简单数学模型

来源:印染在线 发布时间:2010年06月01日

完全曝气稳定系统流程图图中V—池子容积;X—材料质量浓度;Q—废水的体积流量;S0—基质进口浓度;S—基质出口浓度(也即曝气池内基质浓度)。设&为水力池内停留时面,则&=V/Q。设系统材料平均停留时间是&c,则有:&c=反应器内材料质量/材料流失速率=VX/QX=V/Q在完全混合系统内,水力停留时间等于材料平均停留时间。这种系统是唯一的&=&c的系统。或者说,对于其他类型处理系统,不可能有这种关系。质量平衡:质量变化速率=反应速率-质量外流速率V(Dx/dt)=[Y(ds/dt)-KdX]V-QX为实现稳定操作,则应有dX/dt=0,因此得到:此推导仅适用于完全混合曝气池。设去除率为E,E可按下式求出:Monod方程:改写为则得基质与材料的比表示系统的污染物去除效率,即则有对所讨沦的系统去除有机物效率取决于材料的平均停留时间,也是取决于水力停留时间,因为在这一系统中二者是相等的。如果动力学系数及去除率一定,则系统容积的大小就可以被确定了。悬浮固体浓度计算


1  
 相关信息 
  • 分享
  • 分享至腾讯微博
  • 分享至开心网
  • 分享至人人网
  • 分享至新浪微博
  • 分享至网易微博
  • 分享至豆瓣网
  • 分享至MSN
  • 分享至飞信空间
  • 打印该网页
  • 打印
 推荐企业
 推荐企业
浙江锦峰纺织机械有限公司
 推荐企业
丝普兰喷气织机 润源经编
关于纺机网 | 网络推广 | 栏目导航 | 客户案例 | 影视服务 | 纺机E周刊 | 广告之窗 | 网站地图 | 友情链接 | 本站声明 |