2.3.5 丝织物的等离子体处理
采用等离子体对蚕丝的改性处理研究得相对较少。行人曾利用氮气辉光放电产生的低温等离子体处理柞蚕丝,经处理后的柞蚕丝可以大大改善其润湿性和染色性。如果丝织物采用微粒子染色时,采用等离子体照射后,纤维表面受到离子射流的刻蚀,使纤维表面形成许多微小的凹坑和微细裂纹,可提高织物吸附微粒子的耐久性和染色的鲜艳度,从而提高了丝织物染深性。
Yasuda等研究了等离子体处理过的丝纤维表面形态的变化,发现CF4气体改变了丝纤维的润湿性,使其与水的接触角由0°增加到136°,这表明了氟原子已植入丝纤维表面。苏州丝绸科学研究所探索了等离子体处理对丝绸性能的影响,发现丝织物在一定条件的低温等离子体处理后,毛细管效应增加,染色速度加快,但过度的处理反而会降低织物的吸湿性,通过扫描电子显微镜观察发现纤维表面产生了许多凹坑。国外科研人员对脱胶丝绸的处理作了系统的研究,发现丝织物经等离子体处理后物理性能如拉断强力、拉断伸长无明显变化;织物白度在一定处理时间内无明显变化,但处理时间过长,白度有所降低;纤维分子量无明显变化;织物上染能力明显提高。
2.3.6 合成纤维的等离子体处理
许多学者对合成纤维采用等离子体改性产生了极大的关注,其主要研究集中在对涤纶织物的改性,并且已取得了一定的效果。主要是通过等离子体表面处理改性法,使涤纶表面发生分裂、刻蚀,其表面结构和可润湿性都发生了相当大的变化,纤维表面形成微凹坑和一些微细裂纹,纤维的表面积增加,不仅可增强这些纤维与其他纤维间的抱合力,而且可提高纤维表面的润湿性、上染率、染深性和染色牢度。文献将等离子体接枝聚合法用于涤纶织物改性,用低温等离子体引发丙烯酰胺对涤纶织物进行接枝处理,发现接枝后织物的性能大有改善,由于织物导入酰胺基团,亲水性提高,利于染料向纤维内扩散。在最近的研究中,探索了等离子体处理和等离子体接枝的涤纶表面电阻率性能,发现表面电阻率大大地降低了,Maiid Sarmadi等研究用四氯化硅等离子体处理的方法,改善涤纶织物的亲水性。织物在四氯化硅等离子体处理过程中,产生的氯硅阳离子反应性很强,能打效的植入纤维表面,其中主要是SiCl3+离子,这种离子在大气环境中能与水分子反应。迅速转化为Si(OH)x,从而纤维表面呈酸性,能吸附阳离子性物质。通过试验发现,纤维表面增加了硅元素和氧元素,接触角明显降低染色织物的K/S值大大增加。
此外对丙纶和锦纶的等离子体改性也进行了一定的研究。Yasuda及其合作者运用氟碳等离子体处理锦纶织物,并用不同的技术分析其表面性能的变化,发现处理后,锦纶织物表面张力大大降低,接近聚四氟乙烯的表面张力,锦纶疏水性增强,织物具有很好的拒水性。拒水性在水洗、烘干后降低,说明纤维表面的分子片段存在着旋转性。还有人用氨等离子体处理聚烯烃、聚酯、聚氯乙烯以及醋酯纤维后,发现都可以用酸性染料染色,说明纤维表面上接上了含氮的阳离子,所以可以吸附阴离子型的酸性染料。
在建造摩天大楼和特大桥梁时,为了降低其自身的重量常常采用高科技、高性能碳纤维和芳纶纤维来替代钢材,由于这些纤维强度大大高于钢材而重量又十分轻。但其表面十分光滑,与其他建筑材料的粘合力不够理想。可采用等离子体对其进行改性处理,使其表面形成微凹坑和微细裂纹,有效地增强与其他材料的粘合力,提高高层建筑以及水下建筑的坚牢度。
2.3.7 产业用纺织品的等离子体处理
等离子体技术用于产业用纺织品的防护处理具有重要意义。AKZO Nobel公司开发研制的用等离子体技术对弹道材料表面进行处理,先用无机等离子体处理,再用疏水性有机气体的等离子体接枝或覆膜,有效地提高弹道材料的防潮能力进而提高材料的性能。用等离子体处理涤锦双组分复合纤维织物有利于充分开纤,明显提高超细纤维的前处理效率。
3 结语
当今世界上正处于信息时代,高新技术发展越来越快,并己冲破行业的界限,相互交叉,相互渗透,相互促进,共同发展,开拓了纺织染整工业发展的美好前景。除了现代化学、生物化学及计算机的应用外,现代物理学中的等离子体技术业已渗透到纺织染整工业的各个行业,提高了纺织产品的高技术含量。利用等离子体的一些特殊的性质,可对纺织材料进行用其他加工方法无法实现的处理,而且由于等离子体技术符合生态纺织工业的要求,其必将推动纺织染料工业向前快速的发展。