在600~800℃的较高温度下,某些炭分解成乙炔。温度高于800℃时,Ⅲ阶段随之出现。在该阶段,所有剩余的碳质品种都发生完全燃烧,转变成CO和CO2。 气相的活性含溴品种可在一定程度上影响热解,即它们通过增强左旋葡萄聚糖分解为呋喃、庚醛和类似品种的进程来促进挥发反应。含磷阻燃剂如预料的那样可增加成炭,但证据指出,与基于有机磷的阻燃剂相比,具有较大脱水能力的阻燃剂(例如聚磷酸铵)更具有形成芳香族炭的倾向(见后面的6节)。而且,多数原始磷仍留在炭中,据认为,其中的某些磷会通过例如P-O-C键与所存在的碳相结合。这不仅具有增强抗氧化能力的作用,而且还具有在机械上增强结构韧性的作用。令人吃惊的是,所研究的含溴阻燃剂似乎也具有轻微的促炭作用。显然,成炭不是一个简单的过程,上述讨论足以说明阻燃剂很少仅以一种方式发挥作用。另外,一般的成炭路径需要有功能团的存在。功能团可使脱水和交联反应发生,它是脂肪族碳以及最终的芳香族炭结构得以形成的母体。人们知道,氮、硫等元素的存在可通过进一步增强成炭倾向协同性地提高含硫阻燃剂的性能。虽然人们并未完全了解这些活动的化学性质,但可以认为,不但成炭的化学过程受到影响,而且炭的结构和热稳定性也因这些元素的存在和P-N和C-N键的形成而得到改善。 这类反应会作为蛋白质(角蛋白)复杂结构的结果发生在羊毛纤维中,此外,还会发生在非热塑性芳香族纤维中(见9节),这种纤维具有全芳香链,通常以炭-母体结构的形式发挥作用。然而,常见的合成聚合物、聚酯、聚酰胺、聚丙烯和聚丙烯酸都有一个严重的问题,即由于它们因断链或解链反应以及普遍缺乏反应侧基而具有热解倾向,所以往往不能成炭。聚丙烯酸纤维是已证实存在的唯一例外,(见8节)。这种缺乏因纤维的热塑性而加剧。理想的促炭阻燃剂本应在热塑性效应从物理上破坏纺织品的固有性质之前促进交联反应。几乎没有几种商品阻燃剂(不管是作为添加剂、处