纺机网技术中心

 您所在的位置:  纺机网 >  技术中心 >  化纤 >

化学合成纤维在水泥混凝土中的应用

来源:中国纺机网编辑部 发布时间:2013年09月02日
1 纤维混凝土概述
纤维作为建筑材料使用已有相当长的历史,早期人们就把天然纤维,例如稻草、麦秆、棉、麻等添加到墙体材料中,以增加墙体的强度和韧性,防止墙体裂纹[1]。近代关于纤维混凝土的理论研究开始于1910 年,由美国的Porter 首创。1911 年美国的Graham 正式将钢纤维掺到混凝土中,并初步验证了它的优越性。著名的化学公司如杜邦公司、3M 公司、日本帝人公司等都开发出了多种水泥增强用纤维品种,并已经在高速公路、桥梁、摩天大楼、地铁、隧道等土木工程中获得广泛应用。
国内的研究起步较晚,上海合成纤维研究所研究了锦纶短纤维对水泥混凝土的增强效果,安徽皖维公
司将高强高模聚乙烯醇短纤维用于增强混凝土。目前发布的相关标准有YB/T 151—1999《混凝土用钢纤维》、GB/T 21120—2007《水泥混凝土和砂浆用合成纤维》、GB/T 23265—2009《水泥混凝土和砂浆用短切玄武岩纤维》、GB/T 15231—2008《玻璃纤维增强水泥性能试验方法》等。
纤维混凝土通常是以水泥净浆或者砂浆为基体,以非连续的短纤维或者连续的长纤维做增强材料所组
成的水泥基复合材料。纤维在其中起着阻止水泥基体中微裂缝的扩展和跨越裂缝承受拉应力的作用,因而
使复合材料的抗拉与抗折强度以及断裂能较未增强的水泥基体有明显的提高。纤维混凝土增强机理主要有
两种理论。一种是纤维间距理论,另一种是复合力学理论。纤维间距理论由 Romualdi 和 Batson 于 1963 年提出,根据线弹性断裂力学来说明纤维对裂缝发生和发展的阻滞作用。该理论认为要增强混凝土的抗裂性和延性,必须尽可能地减小基体内部缺陷的尺寸,降低裂缝端的应力集中程度。而纤维的掺入起到了优化材料内部组织结构和降低裂缝端应力集中的双重效应。后来英国 Swamy mangat 教授提出了“复合材料机理”,从复合材料的混合原理出发,将纤维
增强混凝土看作纤维的强化体系,用混合原理推求纤维混凝土的抗拉和抗弯拉强度。
2 用于水泥混凝土的纤维
用于水泥混凝土的纤维按其材质可分为三类。金属纤维:钢纤维、镀铜微丝钢纤维等;无机纤维:又
分为天然矿物纤维(如玄武岩纤维)和人造矿物纤维(如耐碱玻璃纤维、碳纤维、碳化硅纤维);有机纤
维:又分为植物纤维(如木质素纤维)、动物纤维和合成纤维。几种纤维性能对比见表1。
2.1 钢纤维
钢纤维是当今世界各国普遍采用的混凝土增强材料。它具有抗裂、抗冲击性能强、耐磨强度高、与水泥亲和性好,可增加构件强度,延长使用寿命等优点。但是钢纤维搅拌时易结团,混凝土和易性差,泵
送困难、难以施工且易锈蚀,钢纤维混凝土的自重大、振捣浇注时往往会沉于混凝土下部,不可能均匀分布。
2.2 耐碱玻璃纤维
耐碱玻璃纤维强度/重量比要比钢大,具有高抗拉强度,延伸性低,很高的抗变形能力。玻璃纤维在道路工程施工中,有很广泛的应用,因为它与路面混合料具有良好的相容性。但玻璃纤维混凝土暴露于大气中一段时间后,其强度和韧性会有大幅度下降,即由早期高强度、高韧性向普通混凝土退化。  
2.3 碳纤维
碳纤维是20世纪60年代开发研制的一种高性能纤维,具有抗拉强度和弹性模量高、化学性质稳定,与混凝土粘结良好的优点,但由于碳纤维价格昂贵,工程应用中受到很大限制。
2.4 玄武岩纤维
玄武岩纤维是典型的硅酸盐纤维,比重为2.63g/cm3~2.8g/cm3,用它与水泥混凝土和砂浆混合时易于分散,新拌玄武岩纤维混凝土的体积稳定、耐久性好,耐酸又耐碱,具有优越的耐高温性、防渗抗裂性和抗冲击性。
2.5 合成纤维
常用的大多数合纤,如经机械、表面活性剂、氧氟等表面处理后,其短纤都可用于混凝土的改性,从而提高或改善其物理力学性能,尤其是可大幅度提高其韧性。而且价格低廉,生产工艺先进,且施工方便,被广泛应用于广场、机场等大面积混凝土工程中。
采用高弹性模量纤维可大幅度提高混凝土抗拉、抗弯强度。
2.5.1 按弹性模量可分为:
①高弹性模量纤维混凝土(如高强高模聚乙烯醇纤维、芳香族聚酰胺纤维),高弹性模量纤维混凝土在未产生裂纹之前,因纤维弹性模量较高,根据“混合定律”,复合材料的弹性模量随纤维掺量增加而增加,开裂之后主要是纤维受力,只要纤维体积掺量超过临界纤维体积掺量,复合材料承载能力就不会降低,反而增加。采用高弹性模量纤维可大幅度提高混凝土抗拉、抗弯强度,对韧性也有提高,但费用大。
②低弹性模量纤维混凝土(如:聚丙烯纤维、聚酰胺纤维、聚乙烯醇纤维、聚丙烯腈纤维)。它们与钢纤维的相似点是不受水化产物的侵蚀,有一定的抗拉强度,可三维乱向分布于混凝土基体中,其阻裂原理是充分发挥了纤维数量(每公斤数千万根)优势,具有很大的表面积,对微裂缝约束,使之不至于连通,效果显著。
2.5.2 按作用方式可分为:
①短纤维,改善纤维在水泥混凝土中的分散性,通过传递应力吸收高能量,有效抗击冲击力和控制裂缝。
②短纤维铺网或网状纤维,增加纤维与基体的接触面积和接触力,有效降低水泥混凝土固化过程中的塑性收缩,提高构件的耐冲击力,延长构件的使用寿命。
③异型化纤维。如V形纤维、Y形纤维、带钩形纤维等,异型化能够增加纤维与基体的接触表面,加强二者之间的有效粘结,提高增强增韧效果。
④表面涂层改性纤维,利用有机或无机化合物处理或涂层,改善纤维在混合过程中的分散性,提高纤维与基体材料的粘结力。
2.5.3 合成纤维加入水泥基体中的作用
①阻裂。阻止水泥基体中原有缺陷(微裂缝)的扩展并有效延缓新裂缝的出现。
②防渗。通过阻裂提高水泥基体的密实性,防止外界水分侵入。
③耐久。改善水泥基体抗冻、抗疲劳等性能,提高其耐久性。
④抗冲击。提高水泥基体的耐受变形的能力,从而改善其韧性和抗冲击性。
⑤抗拉。在使用高弹性模量纤维前提下,可以起到
提高基体的抗拉强度的作用。
⑥美观。改善水泥构造物的表观形态,使其更加致密、细润、平整、美观。
大力开发合成纤维在非纺织类领域中的应用,已成为世界合纤市场保持持续发展的应对策略之一。开发我国合成纤维在产业中的应用,潜力巨大,而其中开发合纤在混凝土建材中的大量应用,对扩大合纤在产业中的应用领域,以及改善我国混凝土建材的性能具有重要意义。
3 物理性能试验
3.1 抗渗性能试验
试验依据GB/T 50082—2009《普通混凝土长期性能和耐久性能试验方法标准》[2]的规定进行。参照生产企业的建议(每方混凝土纤维掺量为0.9kg~1.8kg、长度为12mm~19mm)。试验采用的聚丙烯工程纤维长度为19mm,掺量分别为0、0.9kg/m3、1.2kg/m3、1.5kg/m3、1.8kg/m3。试件共分为5组。每组6个试件。试件上口内部直径为175mm,下口内部直径为185mm,高度为150mm。
混凝土配合比为水泥:石子:砂:水=360:1065:720:205。使用同一台搅拌机,纤维加在集料之间,干拌30s左右,然后加水泥和水进行强制搅拌。试件试验龄期为28d,使用同一台混凝土抗渗仪(HP-4.0自动调压混凝土抗渗仪),采用逐级加压法,每次试验安排一组度件(6个)。试验时由初始0.1MPa开始加压,以后每隔8h增加0.1MPa,随时观察试件端面渗水情况。当6个试件中有3个试件表面出现渗水时,试验结束,记录此时的水压。抗渗等级计算公式为:P=10H-1。其中:P——混凝土抗渗等级,H——6个试件中有3个试件渗水时的水压力
(MPa)。试验结果如表2所示。
试验结果表明,混凝土中掺入聚丙烯工程纤维后,大幅度提高了混凝土的抗渗性能,掺量越大,抗渗性能等级越高。
3.2 抗压强度、劈裂抗拉强度试验
试验依据GB/T 50081—2002《普通混凝土力学性能试验方法》[3]进行。所用水泥为市售P
.O42.5水泥,配制C40混凝土,水灰比为0.41。采用的聚丙烯工程纤维长度为19mm。试件共分为5组(聚丙烯工程纤维掺量分别为0、0.9kg/m3、1.2kg/m3、1.5kg/m3、1.8kg/m3),每组3个试件。
试验结果如表3所示。
试验结果表明,混凝土中掺入聚丙烯工程纤维后,对28d抗压强度有一定幅度(1.4%~3.3%)的提高,但对混凝土劈裂抗拉强度的影响明显,最高增幅为27.8%。
3.3 抗冲击试验
试验依据GB/T 21120—2007《水泥混凝土和砂浆用合成纤维》附录C[4]规定的混凝土抗冲击性能试验方法进行。所用水泥为市售P.O42.5水泥,配制C40混凝土。采用的聚丙烯工程纤维长度为19mm。试件共分为5组(聚丙烯工程纤维掺量分别为0、0.9kg/m3、1.2kg/m3、1.5kg/m3、1.8kg/m3),每组6个试件。按附录C.1自制冲击装置,方形钢锤重4.5kg,垂直距离为457mm。
试验结果值如表4所示。
试验结果表明,混凝土中掺入聚丙烯工程纤维后,对抗冲击性能有明显影响,可提高破坏冲击次数233%。
4 试验结论和建议
1)掺入聚丙烯工程纤维的混凝土抗渗性能改善效果与纤维掺量有关,在一定范围内,掺量越大,效果越好。掺入聚丙烯工程纤维后,对混凝土劈裂抗拉强度的影响明显,增幅为8.3%~27.8%,对抗冲击性能也有明显影响,破坏冲击次数提高2~3倍。综合考虑性能改善与经济成本,建议掺量为1.5kg/m3~1.8kg/m3。
2)相对于低弹性模量的聚丙烯纤维,高弹性模量纤维对混凝土性能的改善更为明显。杜修力[5]等研究表明,随着高强高模聚乙烯醇(PVA)纤维掺量由0.5%增加到1.5%,混凝土劈裂抗拉强度几乎呈线性增长,分别比基体混凝土提高14.695%、35.23%,拉压比提高了56.36%。彭苗[6]等研究表明,当玄武岩纤维掺
量为4 kg/m3,28d抗压强度提高率为46.3%。具体纤维掺量和纤维长度等应根据纤
维类型、混凝土用途等来确定。
3)日本防灾科学技术研究所与东京工业大学合作,用长度为1.2cm、截面宽度为0.03mm、1.5%比例掺加聚丙烯纤维制成混凝土,用这种混凝土建造的桥墩模型能够抵抗相当于1995年阪神大地震1.5倍的巨大晃动。我国在纤维混凝土的研究和推广应用方面应进一步加强,此外,掺入纤维对混凝土各项性能的长期影响方面的研究还有待深入进行。
参考文献:
[1]徐建军,叶光斗,李守群.用于混凝土增强的化学纤维[J].纺织科技进展,2006(2):12-14.
[2]GB/T 50082—2009《普通混凝土长期性能和耐久性能试验方法标准》[S].
[3]GB/T 50081—2002《普通混凝土力学性能试验方法》[S].
[4]GB/T 21120—2007《水泥混凝土和砂浆用合成纤维》[S].
[5]杜修力,田予东,窦国钦.纤维超高强混凝土的制备及力学性能试验研究[J].混凝土与水泥制品.2011(2):44-48,71.
[6] 彭苗,黄浩雄,廖清河,等.玄武岩纤维混凝土基本力学性能试验研究[J].混凝土.2012(01):74-75.

1  2  3  4  5  6  
 相关信息 
  • 分享
  • 分享至腾讯微博
  • 分享至开心网
  • 分享至人人网
  • 分享至新浪微博
  • 分享至网易微博
  • 分享至豆瓣网
  • 分享至MSN
  • 分享至飞信空间
  • 打印该网页
  • 打印
 推荐企业
 推荐企业
浙江锦峰纺织机械有限公司
 推荐企业
丝普兰喷气织机 润源经编
关于纺机网 | 网络推广 | 栏目导航 | 客户案例 | 影视服务 | 纺机E周刊 | 广告之窗 | 网站地图 | 友情链接 | 本站声明 |