2.6拒水拒油防污功能
由于纳米粒子的小尺寸效应、表面和界面效应,纳米粒子表面的原子存在大量的表面缺陷和许多悬挂键,具有很高的化学活性。纳米粒子高度分散在纱线之间、纤维之间和纤维表面,它们与粘合剂等在纤维表面呈凹凸有致的排列,形成纳米尺寸的空气薄膜,使沾污物无法直接渗入纤维,阻止了油污的进一步渗透,大大提高了拒水、拒油和防污性能。这类纺织品洗涤时,可仅用清水洗涤,不必再使用传统的洗涤剂。用该技术生产的国旗,不吸灰、不吸水、不褪色。
2.7抗老化功能
有些纤维不耐日晒,在紫外线的照射下会发生分子链的降解,将纳米紫外线吸收剂均匀分散于高分子材料中,可以利用其对紫外线的吸收作用,防止分子链的降解,从而达到防日晒耐老化的效果。纳米级的TiO2、SiO2、ZnO、ZrO2和Fe2O3等均是优良的抗老化剂,可以明显地提高织物的耐老化性能。
2.8阻燃功能
大部分合成纤维属于熔融性可燃纤维,对纤维进行阻燃化处理,降低织物在火灾中的危险性,已成为一个广泛关注的研究方向。近年来,国外开发的胶体三氧化二锑具有粒径小(小于100nm)、易分散、着色强度低的特点,在阻燃纤维的应用中取得了较好的效果[11]。20世纪80年代末至90年代初兴起的聚合物/无机物纳米复合材料更是开辟了阻燃高分子材料的新途径,国内外已经研究在聚酯聚合过程中或纺丝熔体中加入纳米层硅酸盐材料来改善聚酯材料的物理机械性能或燃烧性能[12]。
国外用共混法制得的阻燃改性纤维有阻燃粘胶纤维,如美国的Durvil、奥地利的Lenzing、日本的Tuflan;也有阻燃丙纶纤维,如瑞士的Sandoflam5071。
2.9自洁净功能
纺织品在人体穿着和使用过程中,不小心会沾水、沾油和其他各种污物,这些污物不仅影响人们的使用,而且会成为微生物繁殖的良好环境。随着人们生活节奏的加快以及生活质量要求的提高,各类运用不同机理研制出的具有自清洁能力的纺织品应运而生。目前,常用的光触媒包括纳米TiO2、ZnO、SiO2等。
2004年,香港理工大学的研究人员将棉布片在TiO2溶液中浸泡0.5min,然后取出弄干,放入97℃烤箱加热15min,再在沸水中煮3h制得自洁净纺织品。当纺织品的表面覆盖一层TiO2的时候,在光照条件下反应可形成诸多活性物质,这些活性物质具有极强的氧化作用,不仅能氧化破坏微生物,而且可将有机污染物完全氧化破坏,从而起到洁净环境和除臭等作用。由于TiO2催化剂只要在阳光下就能永远发挥作用,因此这种自洁净效果可以维持下去。XinJohnH和KiwiJ等采用化学方法将TiO2负载到棉织物上,实验所制备的织物在紫外光照射下,可以对葡萄酒、化妆品、汗渍及咖啡造成的污迹具有自洁净功能。[13]
2.10变色功能
变色纤维是一种具有特殊组成结构的纤维,当受到光、热、水分或辐射等外界激化条件作用后,具有可逆自动改变颜色的性能。纤维在一定波长的光的照射下会发生颜色变化,而在另一种波长的光的作用下又会发生可逆变化回到原来的颜色,这种纤维称为光敏变色纤维。具有光敏变色的物质通常是一种具有异构体的有机物,这些化学物质因光的作用产生异构,并生成两种化合物。这些化合物的分子式没有发生变化,但对应的键合方式或电子状态产生了变化,可逆地出现吸收光谱不同的两种状态,即可逆地显色、褪色或变色。美国Clemson大学和Georgia理工学院等研究机构近年来正在探索光纤中掺入纳米变色染料或改变光纤表面的涂层材料,使纤维的颜色能够实现自动控制。日本松井色素化学工业公司制成的光致变色纤维,在无阳光下不变色,在阳光或UV照射下显深绿色。[14]
3展望
随着纳米技术的进一步发展,纳米粒子生产成本的降低及功能性纳米粒子品种的增多[15],纳米功能纤维的应用将进一步扩大,其市场需求潜力巨大。现在,我国的化纤生产已具有相当的生产规模和技术实力,完全有能力、有条件进行纳米功能纤维及其技术的研究开发。我们相信不同形态与性能的纳米功能纤维的开发与应用,必将给纺织行业乃至整个轻工业都带来新的生机。但一些问题仍需值得我们去思考和研究:
1)由于纳米粒子比表面积大,极易聚集成团,且亲水疏油,呈强极性,在有机介质中难以分散。因此,要选择有效的表面改性剂对纳米粒子表面进行处理,降低表面能,改善其同纤维材料的亲和性,提高纺丝流变性和可纺性;
2)由于纳米粒子尺寸很小,是否会从纺织品上迁移到人体内部对人体健康产生威胁,到目前为止,世界上还没有作为专题来研究纳米功能纺织品的安全性问题,更缺乏相关的安全性评价体系及检测标准,使人们在应用纳米功能纺织品时存在一定的顾虑[16];
3)目前我国研究院所和高等院校在纳米功能纤维成形与应用方面的研究已取得较大成绩,但总体来说还停留在实验室阶段,离产业化还有很长一段路要走;
4)由于我国功能纤维及纺织品起步比较晚,产品又缺少相关的国际、国家或行业标准,全国大都处于摸索阶段检验,迄今为止,全国还没有承担检验各种功能纤维及纺织品的国家级检测机构。
参考文献:
[1]朱平.功能纤维及功能纺织品[M].北京:中国纺织出版社,2006:224.
[2]程学忠,文永奋.功能性化纤产品的开发及纳米技术的应用[J].纺织导报,2004,(4):111-113
[3]宋铖.纳米腈纶抗菌纤维的生产及应用[J].轻纺工业与技术,2010,(5):1-3
[4]杨建忠.2001功能性纺织品及纳米技术应用研讨会论文集[C].北京:纺织行业生产力促进中心,2001,20.
[5]芦长椿.纳米纤维的应用研究现状与潜在市场[J].纺织导报,2009,(8):40-44
[6]路艳华,王漓江,刘治梅,郝旭.纳米材料在功能纺织品方面的应用及研究进展[J].辽东学院学报(自然科学版),2008,(2):61-65
[7]沈静.高活性纳米抗菌腈纶纤维的研发[J].中国纤检,2010,(1):82-86
[8]韩威威,邓桦,解艳娇,张博睿.织物抗紫外线性能研究[J].天津工业大学学报,2009,28(6):69-72
[9]许颖琦,颜婷婷,朱苏康.棉织物的纳米TiO2和ZnO紫外屏蔽整理[J].东华大学学报(自然科学版),2008,34(4):387-390
[10]刘尊武.防电磁辐射织物[J].国外纺织技术,2003,(4):35-37
[11]李宾杰,吴志申,周静芳.超细氧化锑阻燃剂的研究进展[J].塑料工业,2003,31(9):1-4
[12]周向阳,贾德民,严志云.聚酯纤维阻燃技术研究进展[J].合成材料老化与应用,2011,40(1):37-41
[13]付思美.金属氧化物纳米技术在功能纺织品中的应用及研究进展[J].山西化工,2009,29(2):32-35
[14]王锦成,陈月辉,陈琼云.纳米材料在化学纤维中的应用现状[J].印染,2004,(7):45-48
[15]刘义,张增强.纳米技术在功能性化纤开发中的应用[J].纺织导报,2005,(8):58-62
[16]郑敏,陈军,卢红蓉,吴佳卿.纳米功能性纺织品开发以及安全性研究现状[J].印染助剂,2009,26(4):5-10
(作者单位:安徽省纤维检验局)