3酶制剂技术的近代发展
3.1第一代酶制剂是从动物、植物组织中提取的,而现在工业上应用的酶,主要来自微生物,因为微生物种类多,所有的酶几乎都能从微生物中找到,而且微生物易于培养,只要有简单的设备和一般原料为培养基,就能迅速繁殖,获得大量的酶。
3.2第二代酶制剂是通过基团工程方法生产的。它是将生产有效酶的微生物基团、重组成生产性高的其他微生物基团,进行高效酶的生产。
DNA重组菌是将编号的目的酶基团进行单体分离(纯株培养)得到的。
首先,用制限酶分解而产生目的酶的染色体,再将它和称为媒体的基团运输体结合,形成DNA重组媒体,接着将它引入寄生性细菌内,用细菌杂交等方法,选择进入目标。基团的DNA重组菌,DNA重组菌是多数DNA在菌体内重组,使媒体扩大,生产大量基团产物(酶)。寄生菌主要使用枯草菌和曲菌。
3.3第三带酶制剂是基团重组和蛋白质工程相组合的酶制剂,它是将酶蛋白的部分氨基酸置换为其它氨基酸的变换方法,可以改变酶的耐药性和耐热性等特性。这种基团重组与蛋白质重组的酶制剂在近几年的专利中几乎普遍使用,从而可获得染整加工所需要的酶制剂,其性能得到很大改进。例如混配在家用洗涤剂中的碱性蛋白酶,将酶分子中的一种蛋氨酸更换为丙氨酸,可以使这种酶对漂白剂具有耐久稳定性,而原来是不耐漂的,这正是当前急于需要解决的一个难题。
由于使用基团重组技术和将部分酶蛋白置换为其他氨基酸的蛋白质工程技术,使酶的性质得到改善。近年来,由于基团操作技术的进步,80%以上的工业用酶都是用DNA重组菌生产的。例如退浆用的α淀粉酶,过去是第一代产品,如BF7658酶,后来发展为70℃的中温型酶和90℃高温型酶(第二代产品),几年前,通过基团重组,生产了能在所有温度范围内使用的酶,是又基团重组的芽孢杆菌属微生物培养出来的,在70℃溶液中其酶活力为原中温型酶的4.5,还能在高温区使用,具有良好的耐热性,若用汽蒸法退浆,能在数十秒钟内完全退浆任务。
为了扩大酶的使用价值,人们早就研究酶的固定技术,目前固定化技术也不断改进,与基团工程、蛋白质工程相配合,给工业生产带来了很大益处。但还没有找到普遍适用的固定化方法和廉价的载体。目前通过固定化已有可能将多种固定化酶装在同一个柱中进行多酶反应:淀粉酶、糖画酶、异构酶同柱顺序反应将淀粉转化为果糖;或将糖酵解的酶全部制成固定化酶,能将葡萄精直接生产酒精;α-淀粉酶、果胶酶、脂肪酶固定在同一柱中,对上浆的棉坯布直接进行退浆、煮练,如果再加上漆酶与过氧化酶,则可1次性完成棉的前处理过程,总过程只要3h,还有人大胆设想,通过基团重组、蛋白质工程的置换氨基酸以及DNA编号顺序的重新排列,可以在同一个酶分子中装备不同的活性中心,每种活性中心发生1种催化反应,这种酶就可以完成多种酶的作用,这将为染整工业的革命奠定基础。
固定化酶就是将酶通过化学或物理手段,将酶束缚在一定区见内,限制酶分子在此区间内进行活跃的催化作用。所以固定化酶就是束缚其在一定空间的酶。固定化酶活性中心的氨基酸残基不发生变化,而固定化酶可以提高酶的催化效率和稳定性,使用方便,酶反应易于调节和控制。并且可提高酶催化反应生成物的纯度和得率,还可以节能,固定化:方法吸附法,将酶吸附在吸附剂上;共价结合法,将酶蛋白上的基团通过共价结合连接到载体上;交联法,用交联剂将酶蛋白分子进行交联;包埋法,将酶物理性的包埋在高聚物内。
<<上一页[1][2][3]