2酶的作用原理
酶是活细胞所产生的生物催化剂,生物体内的新陈代谢是在酶的参与下发生化学变化的,没有酶就没有生物的新陈代谢,也就没有生命活动。现在从生物界发现的酶已超过2500多种,工业上大量生产的酶有数十种。
2.1酶蛋白的结构
酶蛋白具有一般蛋白质的物理化学性质,由20种天然氨基酸构成的生物大分子化合物,是由氨基酸以肽健(酰胺健)聚合成的肽链,一个蛋白质分子可能由一条肽链构成,也可能由几条肽链构成。在蛋白质肽链上的氨基酸残基按严格确定的顺序排列,它的侧链可以是各种天然氨基酸,不是单一氨基酸残基的重复。
酶蛋白是球蛋白,具有一级、二级、三级甚至四级结构:一级结构,是指线性排列顺序的蛋白质;二级结构,是指肽链出现α-螺旋结构和β-折叠结构的形式,这是因为肽键上氢原子与另一肽键上的氧原子形成氢键所致;三级结构,是指蛋白质的肽链按严格的立体结构盘曲折叠,而成为完整的一个分子;四级结构,是指几条肽链组成的酶分子以非共价键结合的方式、按一定形式相互结合而成为完整的分子,其中每条完整的肽链称之为亚基。酶单百可以以一种亚基构成,也可以由几种亚基构成,亚基的数目位2~60个,四级结构具有催化活性。
酶分子这种精细和复杂的结构决定了酶的一些独特的性质,使它具有极高的催化效率和高度的专一性,它极易受外界环境的影响,如温度、pH、重金属离子的作用,改变酶蛋白的立体构型,使之变形或破坏,从而使酶丧失活力。新颖的酶制剂通过DNA编排顺序的改变,使酶的结构不易受外界环境的影响而变形,保持良好的活性中心。
2.2酶蛋白的活性中心
酶蛋白与一般蛋白质的不同之处在于酶蛋白具有活性中心。酶蛋白的活性中心是与底物发生催化作用的部位,由酶蛋白的立体构型所决定,一般是三级结构及四级结构才具有活性中心。若这种结构被破坏,活性中心也就破坏,酶就失去活性,这就是当环境变化时,酶丧失活性的原因。
整个酶蛋白,包括活性中心和非活性中心部分,都对酶的整体结构起着维持作用,决定了酶的亲水性强弱、整个分子的电性和电荷分布,以及活性中心周围的环境,如Ph、温度等等,这就决定了酶使用的最佳工艺条件。因此,改变酶蛋白中氨基酸或其排列顺序,就会改变酶的活性中心及其性质和效能。由于探索了其内在关系,便能人为地对酶进行改性,以满足工艺的需要。这便是新颖酶制剂所以能飞速发展的原因。
酶蛋白的活性中心是决定酶催化反应专一性的根本原因。酶催化反应的专一性实际上包括两方面内容:⑴与底物结合的专一性,决定酶的催化作用专一性;⑵对底物催化的专一性,分别由结合与催化部位组成构成活性中心,决定催化活力和催化专一性。
如前所述,酶的活性中心是由肽链中的某些氨基酸基团组成,催化部位的氨基酸数目一般只有2~3个,而结合部位的氨基酸数目要多一些,甚至处于不同的肽链上。
2.3酶催化作用机理
酶是催化剂,在催化反应过程中,酶并不消耗,而是在催化过程中,酶和底物生成络合物,在反应完成后,恢复到原来的酶。酶活性中心的结合部位首先决定了酶催化作用的专一性。因此,有人将它比喻为锁和钥匙的关系,提出了“锁和钥匙”模型,指出,酶蛋白的活性部位与底物的形状和大小完全适合时,才能发生催化反应,否则不会发生催化反应,但这模式过于机械化,因酶和底物都不可能是刚性的。试验证明在反应过程中酶和底物分子的结构在一定程度上会发生改变以适应其相互结合,只要形成三点结合就可以发生催化反应,但其催化机理至今不能用单一的机理解释,有的使底物中某一键发生水解断裂,例如酯的水解,先形成酰中间产物,最后再形成酸,有的催化分解是发生双键的裂解,有的是酶分子使底物氧化或还原,它作为电子的供体或受体。因此,催化机理随酶分子与底物分子的不同而不同,即使同一底物也因使用酶制剂不同而反应机理各异。所以提出了诱导契合学说,且得到了X光衍射证明。在一个合适形状的底物存在时,酶分子活性中心中的催化基团A和B排列在一起,在这种情况下便能发生催化反应,非底物分子虽能与C基团结合,但不能使A、B基团结合,发挥其催化反应,这样的非底物便成了竞争性抑制剂。
<<上一页[1][2][3]下一页>>